
ARPA ORDER NO. 189-1

MEMORANDUM
RM-5573-ARPA
AUGUST 1968

O

CD

THE ON-LINE
FIRING SQUAD SIMULATOR

R. M. Balzer and R. W Shirey

n cr
■ 271988

PREPARED FOR:

ADVANCED RESEARCH PROJECTS AGENCY

74e nam (ZoxfuxiatiMi
SANTA MONICA • CALIFORNIA-

Reproduced b>

CLEARINGHOUSE

4.4

ARPA ORDER NO. 1891

MEMORANDUM
RM-5573-ARPA
AUGUST 1968

THE ON-LINE
FIRING SQUAD SIMULATOR

R. M. Balzer and R. W. Shirey

Tlii^ ri'-iiircli is Mippnrtpd l>v lb«1 NiKjncrd Rrnrarrh Projrci» Agency under Coniracl
Nn I) \ll(lii 07 ('dill. N'icws or conduftioM ronlained in iliis >{\u\\ dundd nol hr
iiiiciiitciccl as rppmwnting ihr <ini(i;il »pinion or |inlir] of MJI'V.

DISTRIBUTION STATEMENT
This document has been approved forpublic release and sak; ito distrihulion is unlimited.

•

74, (Jfi-ttmatiA*
I / 0 f «« » I N S 1 • tANIAMONM« • ikliFOINiA • «OJi'r.

-Ill-

PREFACE

This Memoranduin describes an on-lir. , graphical,

man/machine interactive computer system that employs the

RAND Tablet. The system provides aids for solving a

particular problem of interactive design, and, it is hoped,

will result in significant new solutions. The firing squad

synchronization problem was chosen because it affords an

opportunity for evaluating the problem-solving power of

both the particular aids and such systems as a whole.

R. W. Shirey participated in the 1967 RAND Summer

Graduate Program and is now a RAND Consultant. He is pre-

sently a doctoral candidate in Computer Sciences at the

University of Wisconsin.

-v-

: UMMARY

This Memorandum describes a computer system designed

both to investigate man/machine graphical communications

and to find improved solutions for the firing squad syn-

chronization problem. The system provides aids that allow

the user to approach this problem by methods he might other-

wise not attempt because of the tedious hand calculations

required. Furthermore, the graphical nature of the system

and the type of aids provided combine to influence signifi-

cantly the attitude of the experimenter toward various solu-

tion approaches.

First, the authors state the problem and note some of

its inherent difficulties. Next, they discuss the necessary

tasks for solving the problem, and then go on to show how

and why some of these tasks should be automated. Then,

finally, the authors discuss general principles learned

while building the system, and make recommendations con-

cerning the cost and advisability of constructing similar

systems.

-vii-

CONTENTS

PREFACE iii

SUMMARY V

Section
I. INTRODUCTION 1

II. PROBLEM STATEMENT 3

III, COMMON APPROACHES AND BASIC CONSIDERATIONS . 6
Solution by Hand 7
Solving with Computer Aids 9
Summary Remarks on the Problem 10

IV. THE SYSTEM IN GENERAL 11
Hardware, Software and Interaction 11
Number of States and External State Names 14
The Message Center 14
Entry, Storage and Retrieval of Function
Values 15

Simple Simulation of a Firing Squad 16
Enter Constraints 19
Simulation with Constraints 20
Simulation with Backtracking 21
Frozen and Free Productions 24
Snap View and Bright Positions 24
History Scroll, Freezing and Deletion 25
Image Solutions 26
Miscellaneous 29

V. IMPLEMENTATION EXPERIENCE AND
PREREQUISITES 30

VI. CONCLUSION : 32

REFERENCES 33

.

-1-

I. INTRODUCTION

The purpose of this study is to investigate man/ma-

chine interaction in the context of solving a conceptually

difficult, formal problem. We want a problem that requires

no specialized knowledge, so that a fair comparison can be

made between computer-aided and unaided attempts at solu-

tion. We also want a problem that is graphic. The firing

squad synchronization problem satisfies these criteria ex-

tremely well. It has the added advantage that no optimal

solution has yet been produced.

The system designed for these purposes is essentially

a collection of problem-solving aids that can be divided

into three main groups: the first includes bookkeeping

aids, useful displays of information, ability to get hard

copy, and other basic services; the second, means for test-

ing and simulating solutions; the third, specialized, high-

level heuristic aids for creating solutions. All three

groups attempt to extend the user's power in exploring the

universe of the problem, enabling and encouraging him to

approach the problem in ways that might otherwise be pro-

hibited by immense amounts of necessary hand calculations

or the human tendency toward error.

We hope that this system will result in interesting

new solutions to the firing squad problem, and will provide

new information on the reactions of humans in such man/

machine interactive environments.

-2-

We begin by stating the problem and noting some of

its inherent difficulties. Next, we discuss the necessary

tasks fo' solving the problem, and then go on to show how

and why some of these tasks should be automated. Then,

finally, we make general recommendations concerning the

design of similar computer systems, based on the experience

gained while constructing this one.

II

-3-

PROBLEM STATEMENT

This Memorandum concerns a problem publically first

presented in 1964 by E. F. Moore [1]I

The problem known as the firing squad synchronization
problem was devised about the year 1957 by John Myhill,
but so far as I know the statement of the problem has
not yf.t appeared in print. It has been widely circu-
lated by word of mouth, and has attracted sufficient
interest that it ought to be available in print. The
problem first arose in connection with causing all
parts of a self-reproducing machine to be turned on
simultaneously. The problem was first solved by John
McCarthy and Marvin Minsky, and now that it is known
to have a solution, even persons with no background
in logical design or computer programming can usually
find a solution in a time of two to four hours. The
problem has an unusual elegance in that it is directly
analogous to problems of logical design, systems de-
sign, or programming, but it does not depend on the
properties of any particular set of logical elements
or the instructions of any particular computer. I
would urge those who know a solution to this problem
to avoid divulging it to those who are figuring it out
for themselves, since this will spoil the fun of this
intriguing problem.

Consider a finite (but arbitrarily long) one dimen-
sional array of finite-state machines, all of which
are alike except the ones at each end. The machines
are called soldiers, and one of the end machines is
called a general. The machines are synchronous, and
the state of each machine at time t + 1 depends on the
states of itself and of its two neighbors at time t.
The problem is to specify the states and transitions
of the soldiers in such a way that the general can
cause them to go into one particular terminal state
(i.e., they fire their guns) all at exactly the same
time. At the 1eginning (i.e., t = 0) all the soldiers
are assumed to be in a single state, the quiescent state
When the general undergoes the transition into the state
labeled "Fire when ready," he dees not take any initia-
tive afterwards, and the rest is up to the soldiers.
The signal can propagate down the line no faster than
one soldier per unit of time, and their problem is how
to get all coordinated and in rhythm. The tricky part
of the problem is that the same kind of soldier with
a fixed number K of states is required to be able to
do this, regardless of the length N of the firing squad.

-4-

In particular, the soldier with K states should work
correctly, even when N is much larger than K. Roughly
speaking, none of the soldiers is permitted to count
as high as N.

Two of the soldiers, the general and the soldier
farthest from the general, are allowed to be slightly
different from the other soldiers in being able to act
without having soldiers on both sides of them, but
their structure must also be independent of N.

A convenient way of indicating a solution of this
problem is to use a piece of graph paper, with the
horizontal coordinate representing the spatial position
and the vertical coordinate representing time. Within
the (i, j) square of the graph paper a symbol may be
written, indicating the state of the ith soldier at
time j. Visual examination of the pattern of propaga-
tion of these symbols can indicate what kinds of
signaling must take place between the soldiers.

Any solution to the firing squad synchronization prob-
lem can easily be shown to require that the time from
the general's order until the guns gc off must be at
least 2N-2, where N is the number oi soldiers. Most
persons solve this problem in a way which requires
between 3N and 8N units of time, although occasionally
other solutions are found. Some such other solutions
require 5/2N and of the order of N-squared units of
time, for instance. Until recently, it was not known
what the smallest possible time for a solution was.
However, this was solved at M.I.T. by Professor E. Goto
of the University of Tokyo. The solution obtained by
Goto used a very ingenious construction, with each
soldier having many thousands of states, and the solu-
tion required exactly 2N-2 units of time. In view of
the difficulty of obtaining this solution, a much more
interesting problem for beginnern is to try to obtain
some solution between 3N and 8N units of time, which
as remarked above, is relatively easy to do.*

Goto's solutic] apparently has not been published.

However, Abraham Waksman [3] has found a 16-state minimal-

time solution using essentially the same ideas presented in

Ref. 1, pp. 213-219

-5-

Sec. II below. P. C. Fischer [4] has -\lso used these

ideas in discussing other properties of one-dimensional

iterative arrays of finite-state machines. The best solu-

tion to date is R. M. Balzor's [5] 8-state minimal-time

solution.

■

-6-

III. COMMON APPROACHES AND BASIC CONSIDERATIONS

The firing squad synchronization problem can be solved

by successively sublividing the line into any number of

equal parts, then subdividing each of these parts similarly,

and so on, until all the members of the line become division

points, at which time they all fire. Most existing solu-

tions use this technique, and it can provide solutions of

minimal time, 2N-2. Balzer's solution [5] divides the line

into halves, quarters, eighths, etc.

Finding a solution entails construction of a finite-

state machine by defining for the machine a transition

function that yields appropriate behavior when placed in

the iterative array. Although automata are usually defined

by state tables, here it is easier to interpret a function

as a set of rules called productions. These rules t^ke the

form

LMR ♦ S.

This rule states that if, at timp. t, a machine is in state

M, and the machine on its left is in state L, and the ma-

chine on its right is in state R, then the machine's state

at time t+1 is S. We call S the "resultant" of the produc-

tion.

In particular, we are concerned only with minimal-

time solutions. To treat the problems resulting from the

soldiers at each end of the line, we use an additional state

-7-

as an end marker, and, at each end of the line, a "irtual

additional machine which forever remains in the marker

state. Since no other machine is ever in the marker state,

a single set of productions can be defined for all machines

in the array.

Exhaustive search for the function is out of the ques-

tion, even with the help of a computer, because the number

of possible state tables is far too large. For example, if

we seek a solution with ten states (plus the end marker),

3 2
there will be 9 + 2.9 - 2 = 889 productions. (The problem

statement excludes certain productions and fixes the resultant

of two others.) Each of the 889 productions can assume ten

88 9
values, for a total of 10 functions.

SOLUTION BY HAND

While building a function, say with ten states, the

experimenter faces a number of separate tasks--some routine,

some challenging, many time-consuming and tedious. He

obviously must maintain a large production table. Given

some uable, perhaps only partially completed, he will need

to test it on firing squads of different lengths. This

simply involves retrieving values from the table and copying

them onto graph paper. Both tasks are routine; nevertheless,

performing them will consume much of the experimenter's time.

After several attempts, he may discover that some pro-

ductions are more important than others, that they are keys

to the solution, and he might wish to mark these in order to

-8-

remind himself that their values should not be altered with-

out special consideration.

The challenging tasks are the creative ones, and the

foremost of these is the creation of ingenious approaches

to the problem. These schemes usually appear as a two-

dimensional plan for propagation of signals along the squad

through time. One method for simultaneously implementing

and testing an approach is to draw on the graph paper a

skeleton diagram of the intended function behavior, and

then force the productions to conform to this plan. This

method of defining productions eliminates many false steps.

Special cases arise when the squad is quite short, say

less than fifteen men. After a large portion of the produc-

tion set is defined, especially key productions, and the

function has been tested on longer squads, exhaustive cearch

may become feasible for filling in the special productions

required for these cases.

If an error occurs in a simulation, such as a soldier

firing too early or too late, or if contradictions arise

while attempting to fit productions to a behavior skeleton,

some production must be changed. The experimenter then

becomes interested in why he originally made this definition.

Therefore he finds it useful to keep a history of production

usage, particularly a table of first usages in the simula-

tion he is currently considering.

-9-

In all these tasks there is a high probability of

human error due to the large size of the tables, the large

number of separate acts to be performed, and, of course,

the repetitious nature of most of the work.

SOLVING WITH COMPUTER AIDS

The mechanically repetitious nature of some tasks

naturally leads to thoughts of automating them--providing

computer aids for the experimenter. The obvious candidates

for automation are those tasks which primarily consist of

information storage and retrieval, such as table maintenance

and simulation. Exhaustive search, where feasible, is

handled best by a computer. Having provided these basic

services, other more sophisticated tools become possible

as well. Finally, the graphic nature of both the problem

and the methods previously described influences the choice

of computing hardware; graphic input and output quickly come

to mind.

The use ol interactive graphic equipment is implied

because the reactions of humans to a computing system are

highly important. A rapid interaction between man and

machine tends to stimulate the intuition and perceptivity

of the experimenter; immediate response from the machine

maintains a high level of human cerebral activity. Just as

not having computer aids at all, using them off-line would

slow the response from a second or less to hours. Progress

might become so slow that the user would lose interest in

the problem.

-10-

SUMMARY REMARKS ON THE PROBLEM

Let us sununarize the above discussion--of the problem

and the comparison between attempts at solution with and

without computer aids--in order to draw some conclusions

about the value of this study.

The problem is interesting enough to have attracted

wide attention, but difficult enough that no optimal solu-

tion has been demonstrated. It requires no special back-

ground, and is simple enough that at least an inefficient

solution can be found by hand in a few hours. Conversely,

it is rich enough to suggest a computer implementation of

a number of tools and techniques to aid the investigator.

Also, it is naturally oriented toward the use of inter-

active graphic hardware.

Furthermore, since exhaustive search for a solution

is not practical, the computer aids are only tools, and

the user still must provide the creative insights and

approaches necessary to finding a solution. Thus, the

firing squad synchronization problem is a particularly

suitable vehicle for evaluating the effectiveness of inter-

active, graphical problem-solving aids by comparinc, their

effects with the results of unaided efforts.

-11-

IV. THE SYST".M IN GENERAL

The Firing Squad Synchronization, simulation and

Solution System (FS5) is a highly interactive, graphical

computer system. It furnishes three basic groups of tools:

the first includes bookkeeping for tables; the second deals

with simulation and testing; a third contains the more

sophisticated tools, including the ability to draw and

implement a skeleton plan, request exhaustive searches,

and other functions not obviously needed, but included on

the basis of experience with the problem. Associated with

these three main categories is a corona of minor devices

(e.g., for obtaining hard copy of displays).

HARDWARE, SOFTWARE AND INTERACTION

The FS5 program is written in IBM System/360 PL/I

language and runs on an IBM System/360 Model 40. A user

communicates with the computer via a RAND Tablet [6] in

conjunction with an IBM 2250 cathode ray tube (CRT) display.

The tablet hardware consists of a horizontal 10.24-inch-

square writing surface and a pen-like writing instrument,

together having a resolution of 100 lines per inch along

both Cartesian coordinates.

As the user moves the stylus near the tablet surface,

a (hardware generated) dot on the CRT follows the stylus

motion; this direct feedback helps the user to position

the stylus for pointing or drawing. When he presses the

stylus against the tablet writing surface, a switch in the

-12-

stylus closes, notifying the computer that the user is

beginning a stroke. As he moves the stylus across the

tablet, the stylus track is displayed (via software) on

the CRT; the stylus thus seems to have "ink." When the

stylus is lifted, its switch is opened notifying the com-

puter of a stroke completion, and "inking" ceases. A user

may "point" at an area on the CRT by closing and opening

the stylus switch on the corresponding area of the tablet

surface.

The FS5 program uses a set of graphics subroutines

written at RAND and called the Integrated Graphics System

(IGS). Both character and geometric pattern recognition

are included in IGS [7]. A character written by the user

is replaced on the display by the corresponding machine-

generated character.

The FS5 system presents the user with a picture of a

control panel (Fig. 1). The controls are used as if they

were physical buttons; they are "pushed" by touching them

with the stylus. Problem information is displayed in three

main areas. On the left, FS5 shows the simulations of firing

squads from length one to length 25. On the right, there

is a scroll display of production-usage history. At the

top center, FS5 offers a variety of messages concerning

its own use and status. The use and function of the con-

trols are described in the following sections.

-13-

V^
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

-«v-

MESSAGE CENTER

LENGTH 25 # OF STATES 20

STATES

IMAGES

ABCDEFGHIJKLMNOPQRST

ABCDEFGHIJKLMNOPQRST

FIRST OCCURENCE RESPONSES

STOP _AUTq NORMAL BRIGHT

DEFINE CONSTRAINT REMOVE LAST

CLEAR SQUAD CLEAR FUNCTION

CLEAR CONSTRAINTS FREEZE VALUE

START SQUAD DELETE VALUE

STOP SQUAD

PRINT SQUAD PRINT FUNCTION

EXIT PROGRAM

DEFINE FROZEN

FREE

ABC — D

CHECK SOLUTION 500 500 DO

SNAP VIEW ON SNAP VIEW OFF

IMAGE SOLUTION ON

 I

~~~.~~~l IMAGE_ SOLUTI ON_ OFF^ j 

CONFIRM ACTION 

SCROLL 

UP    DOWN 

Fig. 1—The Firing Squad Simulator Scope Face 



-14- 

NUMBER OF STATES AND EXTERNAL STATE NAMES 

Suppose an experimenter wishes to search for a 10-state 

solution.  He begins by writing "10" in the space provided: 

# of states 10 

For mnemonic purposes, he will find it convenient to have 

the states represented by alphabetic characters or other 

symbols.  For example, he might use acronyms:  "Q" for the 

quiescent state; "G" for the general; "F" for the firing 

state.  Thus, after the number of states is selected, FS5 

displays an initial alphabetic choice for the state names: 

States ABCDEFGHIJ 

At any time, the experimenter may write over this display 

to replace these choices by his own. 

THE MESSAGE CENTER 

If we remove the burden of tedious work only to replace 

it with a large set of system rules and procedures to be 

learned, the experimenter has gained very little.  To avoid 

this pitfall, FS5 has a MESSAGE CENTER which prompts the 

user on system usage, informs him of conditions, and suggests 

actions to take when errors occur.  In other words, FS5 

supplies copious ru i-time diagnostics. 



i 
-15- 

For example, when the experimenter begins to write 

in a value for the number of states, FS5 prompts him with 

ENTER NUMBER OF STATES 
SWEEP TO EXIT. 

If he beings to rewrite the external state names, he sees 

ENTER NAMES OF STATES 
1=QUIESCENT   2=GENERAL 
LAST=FIRING 
SWEEP PEN TO EXIT. 

Furthermore, FS5 guards against such illegal procedures as 

trying to enter one of the three reserve state names—"#", 

".", "?"—in this case by refusing to accept them. 

The policy on a user error is to announce it, correct 

it  and leave the system in a usable condition whenever 

possible, or else inhibit further action until the user 

makes a correction, and advise him how to do so. 

ENTRY, STORAGE AND RETRIEVAL OF FUNCTION VALUES 

For a 10-state solution, as many as 891 function values 

might be needed.  As a complication, a large number of pro- 

ductions might be undefined at any given time.  FS5 pro- 

vides several ways to enter, retrieve and alter productions, 

and takes appropriate action when an undefined production 

is referenced. 

L 



-16- 

To illustrate, the experimenter may enter a production 

by writing 

DEFINE FROZEN QQG - G 

If he later wishes to recall this value, he writes 

DEFINE FROZEN QQG 

and FS5 replaces the "?" by the value; here "G", or by "." 

if the production is undefined. 

Alternatively, the system might have been designed to 

display the entire state table upon request.  However, at 

any one moment the experimenter is usually interested in 

only one production.  Moreover, many table entries might 

never be of interest, because no simulation needs them. 

SIMPLE SIMULATION OF A FIRING SQUAD 

After defining several productions, the experimenter 

will want to test the function on firing squads of various 

lengths; FS5 offers several modes of simulation and testing, 

For a simple case, suppose that a simulation is desired for 

length 4.  The user enters the "4" with the stylus: 

LENGTH 



-17- 

FS5 responds by initializing the firing squad; 

Q  Q  0  G 

F  F  F  F 

In addition, the system always provides tW' productions: 

#QQ ♦ Q   and   QQQ ■♦ Q 

where "#" represents the end-marker state.  These are the 

two productions required by the problem statement. 

Let us further suppose that the user has entered 

QG# ■♦ G,   QQG ♦ G,   QGQ - Q,   and   #GQ -> G. 

He starts the simulation by touching 

START SQUAD 

Then the message center will display 

FIRING IN PROGRESS 



-18- 

Simulation  proceeds  from  time   1   down,   left  to  right  on 

successive   rows.     Because  the  Q  G  G  production  is  undefined, 

simulation  will   cease  at  time   2. 

0 

1 

2 

3 

4 

5 

6 F     F     F 

Undefined, 

The message center will contain 

ERROR:  FUNC NULL & SQAD FREE, 

and the undefined production will be displayed. 

DEFINE FROZEN QGG 

ready for the experimenter to enter a value. 

A simulation may be temporarily halted at any time to 

check its progress.  During these manual stops, FS5 con- 

tinues to advise on system status; and messages are also 

provided for automatic stops. 



-19- 

ENTER CONSTRAINTS 

With these simple services at his disposal, the ex- 

perimenter can turn his attention to finding good solution 

approaches.  FS5 enables him to enter two-dimensional 

skeleton plans which really are a set of constraints on 

the function behavior. 

The state at time zero and the constraints at th'; 

firing time are fixed by the problem statement and provided 

by the system.  To enter other constraints, first the user 

touches 

DEFINE CONSTRAINT 

after which FS5 replies with instructions.  Next, the user 

touches two points to define a line segment on the simu- 

lation display, and then a name in the STATE display. 

0 

1 

2 

3 

4 

5 

6 

Q  Q  Q  G 

F  F  F  F 

Constraint to be entered, 

In other words, a constraint is a line segment of states 

which is "drawn" on the display. 



-20- 

Any number of constraints may be entered, and one may 

be drawn over another.  The "."'s in the display are in- 

tended as guides in determining straignt lines, and FS5 

automatically provides other temporary guides and markers . 

If an error is made or a change desired, the last constraint 

entered may be erased: 

REMOVE LAST 

The ability to enter constraints becomes a powerful 

tool when used in conjunction with the simulation modes 

described in the following two sections. 

SIMULATION WITH CONSTRAINTS 

If the experimenter starts a simulation for length 4 

with all productions undefined except for #QQ ■» Q and 

QQQ ♦ Q,   and with the three-position constraint of the 

previous example, then FS5 will define the production 

QQG -* G from the constraint.  However, the simulation will 

terminate as shown below because neither is QG# defined nor 

is the simulation constrained at the position where QG# is 

first required. 



-21- 

0 

1 

2 

J 

4 

5 

() 

Defined by constraint 

Undefined 

The ability to draw large numbers of complicated constraints 

thus relieves the experimenter of the task of tailoring many 

individual productions to produce the same behavior; all the 

necessary definitions are made by the system. 

The system also detects contradictions between con- 

straints and previously defined functions.  Such an error 

would have occurred had the resultant of QQG been set to Q. 

These contradictions often escape notice when simulations 

are performed by hand. 

As an alternative to drawing constraints, a language to 

describe them might be devised.  However, it is hard to 

imagine a language as easy or as natural to use as the FS5 

method. 

SIMULATION WITH BACKTRACKING 

As mentioned above, exhaustive search for a function 

might become feasible when relatively few productions re- 

main undefined. The use of constraints also can make ex- 

haustive search feasible, because these constraints act as 



-22- 

implicit  definitions.     To  take  advantage  of   constraints,   FS5 

was   equipped with  a  widely  used method  of  efficient  search 

called  the  "backtrack"   technique   [8-10].     For   readers  not 

familiar with backtracking,   or who may  know  it  by another 

name,   a  brief  review  is   in  order. 

Many combinatorial  problems  can  be   stated  in  the  form, 

"Find  a  vector   (s,,   s~,    ...,   s   )   which  satisfies  p   ,"   where 12' m Mn' 
s,,   s~,   ...,   s     are   to  be  chosen  from a   finite   set of  N 1        2 m 

distinct objects,   and  p     is   some  property.     The   "brute 

force"   approach  is   to   form  in  turn  each  of   the  N     possible 

vectors,   testing  whether  or  not  it  satisfies  p   .     A back- 3 rm 

track algorithm is designed to yield the same result with 

far fewer trials. 

The backtrack method consists of defining properties 

p. for 1 ^ k £ m in such a way that whenever (s,, s2, ..., s ) 

satisfies p , tnen (s,, ..., s.) necessarily satisfies p. . 

The computer is programmed to consider only those partial 

solutions (s, , ..., s.) which satisfy p, ; if p, is not 

satisfied, then the N  * vectors (s,, ..., s., s,+l, ..., s ) 

are not examined by the program.  When all choices for s, are 

exhausted, the program backtracks to make a new choice for 

s, -1.  If the properties p, can be chosen in an efficient 

way, comparatively few cases are considered. 

In the firing squad problem, the vector vs,, s-, ..., ■_) 

consists of production definitions.  The backtrack method 

applied in FS5 serially defines the productions as they are 

needed in the simulation of a firing squad of fixed length M. 



-23- 

The method begins with all productions undefined except 

the two required by the problem statement.  After initializing 

the firing squad for length M, the program begins to find the 

new state of each position in the simulation according to the 

productions which are already defined.  If a production is 

encountered which is not already defined, and this occurs at 

an unconstrained position, then the resultant is set to 

either the firing state or another state, depending on 

whether or not this occurs at firing time.  If the position 

is constrained, the resultant is set to the constraint value. 

The proceos of serial definition continues until an 

error occurs.  An error is defined to be either a soldier 

going into the firing state before firing time, a soldier 

not firing at firing time, or a conflict between a constraint 

and a production already defined.  When an error occurs, FS5 

backtracks to find the most recently defined production 

whose resultant is not the firing state, which is first used 

where there is no constraint, and for which all the choices 

of a resultant have not been exhausted.  All productions 

defined after this are now undefined, and this production 

is set equal to a value which has not yet been tried for 

it.  The program then returns to the position in the firing 

squad simulation where this production was first defined, 

and simulation continues from there. 

The above process of finding the new state of a soldier 

and defining production as needed is continued until either 



-24- 

a solution is found for length M or else no productions 

remain which are alterable.  In the latter case, we have 

tried all possibilities which could lead to a solution for 

the given length with the given constraints and a given 

number of states.  Thus there is no solution in this form. 

The experimenter can request FS5 to simulate in "AUTO" 

mode, in which case backtracking will be applied to any un- 

defined productions which are needed.  Backtrack mode may 

be used with or without either constraints or explicit 

production definitions having been entered.  Simulation 

will only cease if either a successful function is found 

or all possibilities are exhausted. 

'ROZEN AND FREE PRODUCTIONS 

The experimenter can freeze the value of a production 

it he wishes to prevent its alteration without his explicit 

consent; the key productions are of this nature.  Frozen 

productions are not altered by any simulation mode.  Hence, 

a frozen production is another form of constraint and, if 

used, may further reduce backtracking effort.  Other pro- 

ductions are termed free because the backtracking mechanism 

is free to alter them. 

SNAP VIEW AND BRIGHT POSITIONS 

While in backtracking mode, it is useful and necessary 

to view the progress of the simulation.  Sometimes the ex- 

perimenter can notice an area where much backtracking occurs. 



-25- 

and enter explicit frozen production or additional con- 

straints to eliminate such bottlenecks.  Furthermore, if 

the constraints are neither numerous nor strong, the number 

of search possibilities could still be astronomical.  In 

this case, if the experimenter periodically views the 

progress of the simulation, he can decide when it should 

be aborted. 

With the "SNAP VIEW" option "ON," redisplay of the 

simulation occurs after each row is completed and also 

whenever the system must backtrack..  Otherwise (and in all 

cases of "STOP" mode), redisplay occurs only when simula- 

tion terminates.  Since a position in a simulation at which 

a production is first used is of special interest, all such 

positions may be brightened by pushing a button: 

BRIGHT 

Both features are optional because frequent redisplay 

significantly increases running time. 

HISTORY SCROLL, FREEZING AND DELETION 

Although the experimenter may never be interested in 

seeing the entire production table at one time, he may have 

occasion to view significant portions of it.  A scroll dis- 

play gives him the list of productions used in the current 

terminated simulation, in order of original usage, and in- 

dicates which are frozen. 



-26- 

If production definitions were generated by con- 

straints or backtracking, he might want to freeze some or 

discard others.  Either can be done by pushing the appro- 

priate button 

FREEZE VALUE 

DELETE VALUE 

and touching productions on the scroll 

IMAGE SOLUTIONS 

Experience with the problem, and general considera- 

tion of the form that any solution must take, led to giving 

FS5 another heuristic tool, which requires explanation 

because its motivation is less obvious than that of other 

program features. 

In any solution, signals must travel the entire length 

of a squad in both directions because the general, before 

he can fire, must know that the order to fire has reached 

the last soldier on the opposite end of the squad.  If the 

signal sent by the general is 1, and the signal returned 

by the last soldier is 2, then we may think of signal 2 as 

being the image produced by the reflection of signal 1 from 

the end of the squad.  In other words, the general bounces 

signal 1 off the end of the squad; the image—echo—returns 

to him as signal 2. 



-27- 

Experience with various solution methods has demon- 

strated many other instances in which the image analogy is 

helpful.  For example, suopose that we are applying the 

technique of successive subdivision, and have contrived a 

partial skeleton plan: 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

G 

G 

G 

3 

3 

3 

3 

3 

3 

G 

G 

G 

G 

G 

G 

G 

G 

G 

G 

G 

G 

The general emits signal 1, and it travels to the left at 

the maximum possible rate of one man per unit of time. 

This signal arrives at the end of the squad and produces 

an image, signal 2, which travels at the same rate in the 

opposite direction. 



-28- 

The general also emits signal 3, and it travels at one- 

third the rate of signal I.  Thus, signals 2 and 3 meet at 

the midpoint of the squad and produce the first division 

point.  This central soldier is then promoted to general, 

and the process can be repeated for each of the two halves. 

To repeat the process, the central general sends signal 

1 to the left as before, but now a signal 4 is also sent to 

the right.  Signal 4 is intended to behave in the same 

manner as 1, except that 4 travels in the opposite direc- 

tion.  Signal 4 is, therefore, an image of signal 1, created 

by reflection about the center of the squad. 

Images imply that certain symmetries will probably 

exist between sets of productions and between pairs of states. 

Therefore, an additional heuristic for the problem is to look 

for solutions having the property that for every production 

LMR ■» S there exists a production. 

Image (R) Image (M) Image (L) ■» Image (S) 

where the Image function maps the set of states onto itself 

such that Image (Image (S)) = S for all states S. 

In FS5, if the image-solution mode is selected and the 

user defines a proper image mapping, then whenever a pro- 

duction is defined, the image production is also defined. 

The image method may be used separately or in combination 

with constraints and backtracking.  Obviously, the image 



-29- 

method also improves the feasibility of exhaustive search 

because the number of free productions is aqain reduced. 

MISCELLANEOUS 

Other controls allow for reinitializations, for simu- 

lation testing over any range of lengths up to 500 men, 

and for hard copy of displays and tables. 

I 



-30- 

V.  IMPLEMENTATION EXPERIENCE AND PREPEQUISITES 

Any system like FS5 endeavors to provide the researcher 

with tools and response time that encourage and allow him 

to apply methods of solution which might otherwise be im- 

practical.  On the other hand, if the labor of writing the 

software is greater than the hand calculation it eliminates, 

a researcher finds small encouragement.  In general, if the 

cost of building an interactive system exceeds the importance 

of the problem area, the system will not be built.  Our feel- 

ing is that the cost of FS5 is reasonable, and that costs 

relative to more important problems will be significantly 

lower. 

The required hardware includes a digital computer, a 

CRT display with appropriate graphic input device, and 

associated interface equipment.  The choice of input device 

is crucial to human reaction.  A light pen is at best a 

clumsy pointing instrument, and a typewriter keyboard with 

display cursor is an unnatural tool.  Had these been the 

only devices available, many FS5 features would have been 

neither conceived nor implemented.  An appliance used in 

the manner of a pencil, such as the RAND Tablet, is central 

to the efficacy of interactive problem-solving systems. 

FS5 required three software types, exclusive of pro- 

gramming language and operating system:  a graphic software 

system (IGS); routines to service displays and controls; 

and routines providing non-graphical aids.  IGS allows the 



-31- 

user to think globally about displays for his problem, 

rather than about intricate hardware and bit patterns. 

Routines to generate and manage displays consist primarily 

of calls to IGS.  Non-graphical routines, such as table 

maintenance and backtracking, were no different than they 

would have been if all output was printed. 

Thus, the major efforts in writing FS5 were to design 

displays and to interface with the existing graphic soft- 

ware.  With such high-level languages as PL/I or FORTRAN, 

and a good package such as IGS, this is not a very dif- 

ficult task. 



-32- 

VI.  CONCLUSION 

An on-line, graphical, man/machine interactive computer 

system can provide greatly increased research power over a 

system lacking these attributes.  This is true even when a 

problem is not inherently graphical.  Anyone who is plan- 

ning a computer system to investigate a difficult problem 

area should consider extending the design to make it graphical 

and interactive.  Since most medium and large computer fa- 

cilities already have the necessary hardware and basic soft- 

ware, and since construction of routines to generate and to 

manage displays is quite simple, the added cost should be 

very small compared to the extra utility gained. 

— 



-33- 

REFERENCES 

1. Moore, E. F., Sequential Mdchines, Selected Papers, 
Addison-Wesley, 1964. 

2. Goto, Eiichi, "A Minimum Time Solution of the Firing 
Squad Problem" (Dittoed Course Notes for Applied 
Mathematics 298, Harvard University), May 1962, 
pp. 52-59. 

3. Waksman, Abraham, "An Optimal Solution to the Firing 
Squad Synchronization Problem," Information and 
Control, Vol. 9, No. 1, February 1966, pp. 66-78. 

4. Fischer, Patrick C, "Generation of Primes by a One- 
Dimensional Real-Time Iterative Array," Journal of 
the Association for Computing Machinery, Vol. 12, 
No. 3, July 1965, pp. 388-394. 

5. Balzer, Robert M., Studies Concerning Minimal Time 
Solutions to the Firing Squad Synchronization Problem, 
ARPA SD-146 (Ph.D. Thesis), Center for the Study of 
Information Processing, Carnegie Institute of Tech- 
nology, Pittsburgh, Pennsylvania, 1966. 

6. Davis, M. R., and T. 0. Ellis, "The RAND Tablet:  A 
Man-Machine Graphical Communication Device," AFIPS 
Conference Proceedings (1964 FJCC), Vol. 26, Part I, 
Spartan Books, Inc., Baltimore, Maryland, 1964, pp. 
325-331; also, The RAND Corporation, RM-4122-ARPA, 
August 1964. 

7. Groner, Gabriel F., Real-Time Recognition of Hand- 
printed Text, The RAND Corporation, RM-5016-ARPA, 
October 1966. 

8. Walker, R. J., "An Enumerative Technique for a Class 
of Combinatorial Problems," AMS Proc. Symp. Appl. 
Math., 10, 1960, pp. 91-94. 

9. Golomb, Solomon W., and Leonard D. Baumert, "Backtrack 
Programming," Journal of the Association for Computing 
Machinery, Vol. 12, No. 4, October 1965, pp. 516-524. 

10.  Hall, Marshall, Jr., and D. E. Knuth, "Combinatorial 
Analysis and Computers," The American Mathematical 
Monthly, Vol. 72, No. 2, Part II, February 1965, 
pp. 21-28. 


